[Use of an artificial neural network for detecting excess deaths due to cholera in Ceará, Brazil].

نویسنده

  • Maria Lúcia F Penna
چکیده

OBJECTIVE To evaluate recurrent neural networks as a predictive technique for time-series in the health field. METHODS The study was carried out during a cholera epidemic which took place in 1993 and 1994 in the state of Ceará, northeastern Brazil, and was based on excess deaths having 'poorly defined intestinal infections' as the underlying cause (ICD-9). The monthly number of deaths with due to this cause between 1979 and 1995 in the state of Ceará was obtained from the Ministry of Health's Mortality Information System (SIM). A network comprising two neurons in the input layer, twelve in the hidden layer, one in the output layer, and one in the memory layer was trained by backpropagation using the fist 150 observations, with 0.01 learning rate and 0.9 momentum. Training was ended after 22,000 epochs. We compare the results with those of a negative binomial regression. RESULTS ANN forecasting was adequate. Excessive mortality (number of deaths above the upper limit of the confidence interval) was detected in December 1993 and October/November 1994. However, negative binomial regression detected excess mortality from March 1992 onwards. CONCLUSIONS The artificial neural network showed good predictive ability, especially in the initial period, and was able to detect alterations concomitant and a subsequent to the cholera epidemic. However, it was less precise that the binomial regression model, which was more sensitive to abnormal data concomitant with cholera circulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes

One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of co...

متن کامل

Detecting Fake Websites Using Swarm Intelligence Mechanism in Human Learning

The internet and its various services have made users to easily communicate with each other. Internet benefits including online business and e-commerce. E-commerce has boosted online sales and online auction types. Despite their many uses and benefits, the internet and their services have various challenges, such as information theft, which challenges the use of these services. Information thef...

متن کامل

Detecting Depression in Elderly People by Using Artificial Neural Network

Introduction: The possibility of depression is common in the elderly. Novel technologies allow us to monitor people related to depression. Hence, a model was provided to detect depression in elderly based on artificial neural network (ANN). Methods: The present study is an applied descriptive-survey research. Forty elderly people were randomly selected from the Elderly Care Center in Gonbad Ka...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile &#10properties of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Revista de saude publica

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2004